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Abstract. The objective of this paper is to show that time-reversal invariance can
be exploited in acoustics to accurately control wave propagation through complex
media.

1 Introduction

In time-reversal acoustics [1,2,3,4] a signal is recorded by an array of trans-
ducers, time-reversed and then re-transmitted into the medium. The re-
transmitted signal propagates back through the same medium and refocuses
on the source. In a time-reversal cavity (TRC) the array completely surrounds
the source, and thus the time-reversed signals propagate backwards through
the medium and go through all the multiple scattering, reflections and re-
fraction that they underwent in the forward direction. If the time-reversal
operation is only performed on a limited angular area (a time-reversal mir-
ror TRM), a small part of the field radiated by the source is captured and
time-reversed, thus limiting reversal and focusing quality.

The basic principles and limitations of time-reversal acoustics are de-
scribed in Sect. 2. Various time-reversal experiments conducted with TRMs
are then discussed in Sect. 3. It will be shown that focusing quality is im-
proved if the wave traverses random media or if the wave propagates in me-
dia with reflecting boundaries as waveguides or reverberating cavities. The
focusing resolution may be much better than the resolution obtained in an
homogeneous medium. Multiple scattering or multiple reflections allow one
part of the initial wave to be redirected towards the TRM that normally
misses the transducer array. TRM appears to have an aperture that is much
larger than its physical size. It will be shown that, for a reflecting cavity
with chaotic boundaries, a one-channel TRM is sufficient to ensure optimal
focusing. Then differences between time reversal and phase conjugation are
discussed. Finally, Sect. 4 includes a short description of the potential of
TRM in various applications (medical therapy and non-destructive testing).

2 Time-Reversal Cavities and Mirrors

The basic theory employs a scalar wave formulation, φ (r, t), and, hence, is
strictly applicable to acoustic or ultrasound propagations in fluid. However,
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the basic ingredients and conclusions apply equally well to elastic waves in
a solid and to electromagnetic fields.

In any propagation experiment, the acoustic sources and the boundary
conditions determine a unique solution, φ (r, t), in the fluid. The goal, in time-
reversal experiments, is to modify the initial conditions in order to generate
the dual solution φ (r, T − t), where T is a delay due to causality require-
ments. Jackson and Cassereau [4,5] have studied theoretically the conditions
necessary to insure the generation of φ (r, T − t) in the entire volume of in-
terest.

2.1 The Time-Reversal Cavity

From an experimental point of view a TRC consists of a two-dimensional
piezoelectric transducer array that samples the wavefield over a closed sur-
face. An array pitch of the order of λ/2, where λ is the smallest wavelength
of the pressure field, is needed to insure the recording of all the informa-
tion on the wavefield. Each transducer is connected to its own electronic
circuitry, which consists of a receiving amplifier, an analog-to-digital con-
verter, a storage memory and a programmable transmitter able to synthe-
size a time-reversed version of the stored signal. Although reversible acoustic
retinas usually consist of discrete elements, it is convenient to examine the
behavior of idealized continuous retinas, defined by two-dimensional surfaces.
In the case of a TRC, we assume that the retina completely surrounds the
source. The basic time-reversal experiment can be described in the following
way:

As a first step, a point-like source located at r0 inside a volume V sur-
rounded by the retina surface S emits a pulse at t = t0 ≥ 0. The wave
equation in a medium of density ρ (r) and compressibility κ(r) is given by

(Lr + Lt)φ(r, t) = −Aδ(r − r0)δ(t− t0) ,

Lr = ∇
(

1
ρ(r)

∇
)
, Lt = −κ(r)∂tt , (1)

where A is a dimensional constant that insures the compatibility of physical
units between the two sides of the equation; for simplicity, this constant will
be omitted in the following. The solution to (1) reduces to the Green’s func-
tion G(r, t|r0, t0). Classically, G(r, t|r0, t0) is written as a diverging spherical
wave (homogeneous and free space case) and additional terms that describe
the interaction of the field itself with the inhomogeneities (multiple scatter-
ing) and the boundaries.

We assume that we are able to measure the pressure field and its normal
derivative at any point on the surface S during the interval [0, T ]. As time-
reversal experiments are based on a two-step process, the measurement step
must be limited in time by a parameter T . In all the following, we assume
that the contribution of multiple scattering decreases with time and that T
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is chosen such that the information loss can be considered to be negligible
inside the volume V .

During the second step of the time-reversal process, the initial source
at r0 is removed, and we create on the surface of the cavity monopole and
dipole sources that correspond to the time reversal of those same components
measured during the first step. The time-reversal operation is described by
the transform t→ T − t and the secondary sources are{

φs (r, t) = G (r, T − t|r0, t0) ,
∂nφs (r, t) = ∂nG (r, T − t|r0, t0) . (2)

In this equation, ∂n is the normal derivative operator with respect to the
normal direction n to S, oriented outward. Due to these secondary sources
on S, a time-reversed pressure field φtr(r1, t1) propagates inside the cavity. It
can be calculated using a modified version of the Helmoltz–Kirchhoff integral:

φtr(r1, t1) =
∫ +∞

−∞
dt

∫∫
S

[G(r1, t1|r, t)∂nφs(r, t)

−φs(r, t)∂nG(r1, t1|r, t)] d2r

ρ(r)
. (3)

Spatial reciprocity and time-reversal invariance of the wave equation (1) yield
the following expression:

φtr(r1, t1) = G(r1, T − t1|r0, t0) −G(r1, t1|r0, T − t0) . (4)

This equation can be interpreted as the superposition of incoming and out-
going spherical waves centered on the initial source position. The incoming
wave collapses at the origin and is always followed by a diverging wave. Thus
the time-reversed field, observed as a function of time, from any location in
the cavity, shows two wavefronts, the second one being an exact replica of
the first, but multiplied by −1.

If we assume that the retina does not perturb the propagation of the
field (free-space assumption) and that the acoustic field propagates in an
homogeneous fluid, the free-space Green’s function G reduces to a diverging
spherical impulse wave that propagates with a sound speed c. Introducing its
expression in (4) yields the following formulation of the time-reversed field:

φtr(r1, t1) = K(r1 − r0, t1 − T + t0) , (5)

where the kernel distribution K (r, t) is given by

K (r, t) =
1

4π |r|δ
(
t+

|r|
c

)
− 1

4π |r|δ
(
t− |r|

c

)
. (6)

The kernel distribution K (r, t) corresponds to the difference between two
impulse spherical waves one converging to and one diverging from the ori-
gin of the spatial coordinate system, i.e., the location of the initial source.
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Resulting from this superposition, the pressure field remains finite for all
time throughout the cavity, although the converging and diverging spherical
waves show a singularity at the origin. Note that this singularity occurs at
time t1 = T − t0.

The time-reversed pressure field, observed as a function of time, shows two
wavefronts, the second one being an exact replica of the first, but multiplied
by −1. If we consider a wide-band excitation function instead of a Dirac
distribution, δ(t), the two wavefronts overlap near the focal point, therefore
resulting in a temporal distortion of the acoustic signal. It can be shown that
this distortion yields a temporal derivation of the initial excitation function
at the focal point.

If we now calculate the Fourier transform of (6) over the time variable t,
we obtain

K̃(r, ω) =
1

2jπ
sin (ω |r| /c)

|r| =
1
jλ

sin (k |r|)
k |r| , (7)

where λ and k are the wavelength and wavenumber, respectively. As a conse-
quence, the time-reversal process results in a pressure field that is effectively
focused on the initial source position, but with a focal spot size limited to
one half-wavelength. The size of the focal spot is a direct consequence of
the superposition of the two wavefronts and can be interpreted in terms of
the diffraction limitations (loss of the evanescent components of the acoustic
fields).

A similar interpretation can be given in the case of an inhomogeneous
fluid, but the Green’s function G now takes into account the interaction of
the pressure field with the inhomogeneities of the medium. If we were able to
create a film of the propagation of the acoustic field during the first step of
the process, the final result could be interpreted as a projection of this film
in the reverse order, immediately followed by a re-projection in the initial
order.

The apparent failure of the time-reversed operation that leads to diffrac-
tion limitation can be interpreted in the following way: The second step
described above is not strictly the time reversal of the first step. During the
second step of an ideal time-reversed experiment, the initial active source
(which injects some energy into the system) must be replaced by a sink (the
time reversal of a source). An acoustic sink is a device that absorbs all arriving
energy without reflecting it. De Rosny and Fink, using the source as a di-
verging wavefront canceller, have recently built such a sink in our laboratory
and have observed a focal spot size quite below diffraction limits [6].

2.2 The Time-Reversal Mirror

This theoretical model of the closed time-reversal cavity is interesting, since
it affords an understanding of the basic limitations of the time-reversed self-
focusing process; but it has some limitations, particularly compared to an
experimental setup:
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• It can be proven that it is not necessary to measure and time-reverse both
the scalar field (acoustic pressure) and its normal derivative on the cav-
ity surface; measuring the pressure field and re-emitting the time-reversed
field in the backward direction yields the same results, on the condition
that the evanescent parts of the acoustic fields have vanished (propagation
along several wavelengths) [7]. This comes from the fact that each trans-
ducer element of the cavity records the incoming field from the forward
direction and retransmits it (after the time-reversal operation) in the back-
ward direction (and not in the forward direction). The change between the
forward and backward directions replaces the measurement and the time
reversal of the field-normal derivative.

• From an experimental point of view, it is not possible to measure and re-
emit the pressure field at any point on a 2-dimensional surface; experiments
are carried out with transducer arrays that spatially sample the receiving
and emitting surface. The spatial sampling of the TRC by a set of trans-
ducers may introduce grating lobes. These lobes can be avoided by using
an array pitch smaller than λmin/2, where λmin is the smallest wavelength
of the transient pressure field. In this case, each transducer senses all the
wavevectors of the incident field.

• The temporal sampling of the data recorded and transmitted by the TRC
has to be at least of the order of Tmin/8 (Tmin is the minimum period) to
avoid secondary lobes [8].

• It is generally difficult to use acoustic arrays that completely surround
the area of interest, and the closed cavity is usually replaced by a TRM of
finite angular aperture. This yields an increase in the point spread function
dimension that is usually related to the mirror angular aperture observed
from the source.

3 Time-Reversal Experiments

3.1 Time Reversal through Random Media

Derode et al. [9] carried out the first experimental demonstration of the re-
versibility of an acoustic wave propagating through a random collection of
scatterers with strong multiple-scattering contributions. In an experiment
such as the one depicted in Fig. 1, a multiple-scattering sample is placed
between the source and an array made of 128 elements. The whole setup is
in a water tank. The scattering medium consists of a set of 2000 parallel
steel rods (diameter 0.8 mm) randomly distributed. The sample thickness is
L = 40 mm, and the average distance between rods is 2.3 mm. The source
is 30 cm away from the TRM and transmits a short (1µs) ultrasonic pulse
(3 cycles of a 3.5 MHz, Fig. 2a). Figure 2b shows the waveform received on
the TRM by one of the elements. It spread over 250µs, i.e., ∼ 250 times
the initial pulse duration. A long incoherent wave is observed, which results
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Fig. 1. Sketch of experiment (a) first step, the source sends a pulse through the
sample, the transmitted wave is recorded by the TRM. (b) second step, the mul-
tiplay scattered signals are time reversed, they are retransmitted by the TRM and
A records the reconstructed pressure field

from the multiply scattered contribution. As a second step to the experi-
ment, the 128 signals are time-reversed and transmitted and an hydrophone
measures the time-reversed wave around the source location. Two different
aspects of this problem have been studied: the property of the signal recre-
ated at the source location (time compression) and the spatial property of
the time-reversed wave around the source location (spatial focusing).

The time-reversed wave traverses the rods back to the source, and the
signal received at the source is represented in Fig. 2c; an impressive com-
pression is observed, since the received signal lasts about 1 µs, in comparison
to 250µs. The pressure field is also measured around the source, in order to
obtain the directivity pattern of the beam emerging from the rods after time
reversal, and the results are plotted in Fig. 3. Surprisingly, multiple scat-
tering has not degraded the resolution of the system; indeed, the resolution
is found to be six times finer (thick line) than the classical diffraction limit
(thin line). However, this effect does not contradict the laws of diffraction.
The intersection of the incoming wavefront with the sample has a typical
size D. After time reversal, the waves travel on the same scattering paths
and focus back on the source as if they were passing through a converging
lens with size D. The angular aperture of this pseudo-lens is much wider than
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Fig. 2. (a) Signal transmitted in water and recieved on transducer 64. (b) Signal
transmitted through the multiple scattering sample and recieved on transducer 64.
(c) Signal recieved on the source

that of the array alone, and hence there is an improvement in resolution. In
other words, because of the scattering sample, the array is able to detect
higher spatial frequencies than it would in a purely homogeneous medium.
High spatial frequencies that would have been otherwise lost are redirected
towards the array, due to the presence of the scatterers in a large area.

This experiment also shows that the acoustic time-reversal experiments
are surprisingly stable. The recorded signals are sampled with 8-bit analog-to-
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Fig. 3. Directivity patterns in water (thin line), through the multiple scattering
medium (thick line)

digital converters that introduce quantization errors, but the focusing process
still works. This has to be compared to time-reversal experiments involving
particles moving like balls on an elastic billiard table of the same geometry.
Computation of the direct and reversed particle trajectories moving in a plane
among a fixed array of some thousand obstacles shows that the complete
trajectory is irreversible. Indeed, such a system is a well-known example
of a chaotic system that is highly sensitive to initial conditions. The finite
precision that occurs in the computer leads to an error in the trajectory of the
time-reversed particle that grows exponentially with the number of scattering
encounters.

Recently, Snieder and Scales [10] performed numerical simulations to
point out the fundamental difference between waves and particles in the
presence of multiple scattering by random scatterers. In fact, they used time
reversal as a diagnostic of wave and particle chaos; in a time-reversal experi-
ment, complete focusing on the source will only take place if the velocity and
positions are known exactly. The degree δ to which errors in these quantities
destroy the quality of focusing is diagnostic of the stability of the wave or par-
ticle propagation. Intuitively, the consequences of a slight deviation δ in the
trajectory of a billiard ball will become more and more obvious as time goes
on and as the ball undergoes more and more collisions. Waves are much less
sensitive than particles to initial conditions. In a multiple-scattering situa-
tion, the critical length scale δ that causes a significant deviation at a time t in
the future decreases exponentially with time in the case of particles, whereas
it only decreases as the square root of time for waves in the same situation.

Waves and particles react in fundamentally different ways to perturba-
tions of the initial conditions. The physical reason for this is that each par-
ticle follows a well-defined trajectory, whereas waves travel along all possible
trajectories, visiting all the scatterers in all possible combinations. While
a small error in the initial velocity or position makes the particle miss one
obstacle and completely change its future trajectory, the wave amplitude is
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much more stable because it results from the interference of all the possible
trajectories; small errors in the transducer operations will sum up in a linear
way for wave propagation resulting in only a small perturbation.

3.1.1 Time Reversal as a Time Correlator

As for any linear and time-invariant process, wave propagation through a
multiple-scattering medium may be described as a linear system with different
impulse responses. If a source located at r0 sends a Dirac pulse δ(t), the jth
transducer of the TRM will record the corresponding impulse response hj(t)
for a point transducer located at rj to the Green function G(rj , t|r0, 0).
Moreover, due to reciprocity, hj(t) is also the impulse response describing
the propagation of a pulse from the jth transducer to the source. Thus,
neglecting the causal time delay T , the time-reversed signal at the source is
equal to the convolution product hj(t) ∗ hj(−t).

This convolution product, in terms of signal analysis, is typical of a
matched filter . Given a signal as input, a matched filter is a linear filter
whose output is optimal in some sense. Whatever the impulse response hj(t),
the convolution hj(t) ∗ hj(−t) is maximum at time t = 0. This maximum
is always positive and equals

∫
h2

j(t)dt, i.e., the energy of the signal hj(t).
This has an important consequence. Indeed, with an array of N elements,
the time-reversed signal recreated on the source writes as a sum:

φtr(r, t) =
j=N∑
j=1

hj(t) ∗ hj(−t) . (8)

Even if hj(t) are completely random and apparently uncorrelated signals,
each term in this sum reaches its maximum at time t = 0. Therefore, all
contributions add constructively around t = 0, whereas at earlier or later
times uncorrelated contributions tend to destroy one another. Thus the re-
creation of a sharp peak after time reversal in an array of N elements can
be viewed as an interference process between the N outputs of N matched
filters.

The robustness of the TRM can also be accounted for through the matched
filter approach. If, for some reason, the TRM does not exactly retransmit
hj(−t) but rather hj(−t) +nj(t), where nj(t) is an additional noise on chan-
nel j, then the re-created signal is written as follows:

j=N∑
j=1

hj(t) ∗ hj(−t) +
j=N∑
j=1

hj(t) ∗ n(t) .

The time-reversed signals hj(−t) are tailored to exactly match the medium
impulse response, which results in a sharp peak. However, an additional small
noise is not matched to the medium and, given the extremely long duration
involved, it generates a low-level, long-lasting background noise instead of
a sharp peak.
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3.1.2 Time Reversal as a Spatial Correlator

Another way to consider the focusing properties of the time-reversed wave is
to follow the impulse response approach and treat the time-reversal process
as a spatial correlator. If we consider h

′
j(t) to be the propagation impulse

response from the jth element of the array to an observation point r1, not
the source location r0, the signal recreated at r1 at time t1 = 0 can be
written:

φtr
j (r1, 0) =

∫
hj(t)h

′
j(t)dt (9)

Notice that this expression can be used as a way to define the directivity
pattern of the time-reversed waves around the source. Now, due to reciprocity,
the source S and the receiver can be exchanged, i.e., h

′
j(t) is also the signal

that would be received at r1 if the source was the jth element of the array.
Therefore, we can imagine that this array element is the source and that the
transmitted field is observed at two points r1 and r0. The spatial correlation
function of this wavefield would be

〈
hj(t)h

′
j(t)

〉
, where the impulse-response

product is averaged over different realizations of the disorder. Therefore, (9)
can be viewed as an estimator of this spatial correlation function. Note that
in one time-reversal experiment we have only access to a single realization
of the disorder. However, the ensemble average can be replaced by a time
average, a frequency average or a spatial average over a set of transducers.
In that sense, the spatial resolution of the TRM (i.e., the −6 dB width of
the directivity pattern) is simply an estimate of the correlation length of the
scattered wavefield [11].

This has an important consequence. Indeed, if the resolution of the system
essentially depends on correlation properties of the scattered wavefield, it
should become independent from the array’s aperture. This is confirmed by
the experimental results. Figure 4 presents the directivity patterns obtained

Fig. 4. Directivity patterns with N = 122 transducers (thin line) and N = 1
transducer (thick line)
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through a 40-mm-thick multiple-scattering sample, using either one array
element or the whole array (122 elements) as a TRM. In both cases, the
spatial resolution at −6 dB is the same: ∼ 0.85 mm. In contrast to what
happens in a homogeneous medium, enlarging the aperture of the array does
not change the −6 dB spatial resolution. However, even though the number N
of active array elements does not influence the typical width of the focal spot,
it has a strong impact on the background level of the directivity pattern
(∼−12 dB for N = 1, ∼−28 dB for N = 122), as can be seen in Fig. 4.

Finally, the fundamental properties of time reversal in a random medium
rely on the fact that it is both a space and time correlator, and the time-
reversed waves can be viewed as an estimate of the space and time auto-
correlation functions of the waves scattered by a random medium. The esti-
mate becomes better as the number of transducers in the mirror is increased.

Moreover, the system is not sensitive to a small perturbation, since adding
a small noise to the scattered signals (e.g., by digitizing them on a reduced
number of bits) may alter the noise level but does not drastically change
the correlation time or the correlation length of the scattered waves. Even
in the extreme case where the scattered signals are digitized on a single bit,
Derode has shown recently that the time and space resolution of the TRM
were practically unchanged [12], which is striking evidence for the robustness
of wave time reversal in a random medium.

3.2 Time Reversal in Waveguides

In the time-reversal cavity approach, the transducer array samples a closed
surface surrounding the acoustic source. In the last section, we saw how the
multiple-scattering processes in a large sample widen the effective TRM aper-
ture. The same kind of improvement may be obtained for waves propagating
in a waveguide or in a cavity. Multiple reflections along the medium bound-
aries significantly increase the apparent aperture of the TRM. The basic idea
is to replace one part of the TRC transducers by reflecting boundaries that
redirect one part of the incident wave towards the TRM aperture. Thus spa-
tial information is converted into the time domain and the reversal quality
depends crucially on the duration of the time-reversal window, i.e., the length
of the recording to be reversed.

3.2.1 Ultrasonic Waveguide

Experiments conducted by Roux in rectangular ultrasonic waveguides have
shown the effectiveness of time-reversal processing in compensating for mul-
tipath effects [13]. The experiment is conducted in a waveguide whose inter-
faces are plane and parallel. The length of the guide is L ≈ 800 mm along the
y axis, with a vertical water depth H ≈ 40 mm along the x axis.

A point-like ultrasonic source is located on one side of the waveguide. On
the other side, a TRM, identical to the one used in the multiple-scattering
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medium, is used. Ninety-six of the array elements are used, which corresponds
to an array aperture equal to the waveguide aperture.

Figure 5a shows the field radiated by the source and recorded by the trans-
ducer array after propagation through the channel. After the arrival of the
first wavefront corresponding to the direct path, we observe a set of signals,
due to multiple reflections of the incident wave between the interfaces, that
spread over 100µs. Figure 5b represents the signal received on one transducer
of the TRM.

After the time-reversal operation of the 100µs signals, we observe the
spatio-temporal distribution of the time-reversed field on the source plane
(Fig. 6a) and we note a remarkable temporal compression at the source loca-
tion (Fig. 6b). This means that multipath effects are fully compensated for.
The signal observed at the source is nearly identical to the one received in
a time-reversed experiment conducted in free space.

In this experiment, the transfer function of the waveguide has been com-
pletely compensated for by the time-reversal process. As with a multiple-
scattering medium, the time-reversal process enables the realization of an

Fig. 5. (a) Field radiated by the source and recorded by the transducer array after
propagation through the channel. (b) Signal recieved on one transducer of the TRM
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Fig. 6. (a) Spatio-temporal distribution of the time-reversed field on the source
plane. (b) Temporal compression at the source location

optimal matched filter of the waveguide transfer function. Analysis of Fig. 6
shows that the ratio between the peak signal and the side lobe level is on the
order of 45 dB.

Figure 7 shows the directivity pattern of the time-reversed field observed
in the source plane. The time-reversed field is focused on a spot which is
much smaller than the one obtained with the same TRM in free space. In our
experiment, the −6 dB lateral resolution is improved by a factor of 9. This
can be easily interpreted by the images theorem in a medium bounded by
two mirrors. For an observer located at the source point, the 40 mm TRM
appears to be accompanied by a set of virtual images related to multipath
reverberation. The effective TRM is then a set of TRMs as shown in Fig. 8.
When taking into account the first 10 arrivals, the theoretical effective aper-
ture of the mirror array is 10 times larger than the real aperture. However, in
practice, as the replicas arrive later, their amplitudes decrease. The angular
directivity of the transducers leads to an apodization of the effective aperture
of the TRM.
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Fig. 7. Directivity pattern of the time-reversed field observed in the source plane
in free space (dotted line), in the waveguide (solid line)

Fig. 8. Due to reverberation in the waveguide, the effective aperture of the TRM
is increased

3.2.2 Underwater Acoustics

Acoustic waveguides are currently found in underwater acoustics, especially
in shallow water, where multipath propagation limits the capacity of under-
water communication systems. The problem arises because acoustic trans-
mission in shallow water bounces off the ocean surface and floor, so that
a transmitted pulse gives rise to multiple arrivals at the receiver.

To compensate for acoustic reverberation in the ocean, one-channel time
reversal was first introduced in the early 1960s by Parvulescu and Clay
[14,15]. They performed experiments in shallow water at sea with one trans-
ducer working in a time-reversed mode. They observed temporal compression
but their experiments did not include the spatial focusing property of TRMs.
Parvulescu’s approach consists of considering the ocean as a correlator. Jack-
son and Dowling [4] developed a theoretical formalism to describe phase con-
jugation in the ocean. This formalism is based on the modal decomposition of
the pressure field in an acoustic waveguide. Following this approach, in 1992
Feuillade and Clay [16] carried out numerical time-reversal experiments in
shallow water. Since 1996, Kuperman et al. [17,18] have performed several
underwater acoustics experiments in a 120-m-deep ocean waveguide. At fre-
quencies of 500 Hz and 3.5 kHz, they used a 24-element TRM to accomplish
time-reversal focusing and multipath compensation from 7 km up to 30 km.
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Theoretically speaking, for one spectral component at frequency ω, the
time-reversal operation consists of a phase conjugation of the incident field.
For an incident field coming from a point source located at depth xs in the
plane y = L, the phase conjugation, performed in shallow water, from a ver-
tical array of N discrete sources located in the plane y = 0 leads to the
following time-reversed pressure field at observation point (x, y):

φtr(x, y, t) =
N∑

j=1

Gω (x, y|xj , 0)G∗
ω (xj , 0|xs, L) exp (−iωt) , (10)

where G∗
ω(xj , 0|xs, L) is the conjugated monochromatic “Green’s function”

of the waveguide at frequency ω between a source at depth xs and range L
and a receiver at depth xj and range 0. In other words, the phase-conjugated
field in the plane of the source is the sum over the array elements of a product
of two Green’s functions: one describes the propagation from the source to
the array, and the other describes the propagation from the array to the
observation plane. Time reversal appears in the conjugation of the Green’s
function between the source and the array in the right term of (10). In a range-
independent waveguide, the Green’s function is expressed as follows:

Gω (x, 0|xs, L) =
i

ρ (xs) (8πL)1/2
exp

(
−i
π

4

) ∑
n

un (xs)un (x)

k
1/2
n

exp (iknL) , (11)

where n is the number of the propagating mode, un(x) corresponds to the
modal shape as a function of depth and kn is the wavenumber. To demon-
strate that φtr(x, y, t) focuses at the position of the initial source, we simply
substitute (11) into (10), which specifies that we sum over all modes and
array sources:

φtr (x, y, t) ≈∑
j

∑
n

∑
m

um (x) um (xj)un (xj)un (xs)
ρ (xj) ρ (xs)

√
kmknyL

exp [i (kmy − knL) − ωt] . (12)

For an array which substantially spans the water column, we approximate
the sum of sources as an integral and invoke the orthonormality of the modes:∫ ∞

0

um (x)un (x)
ρ (x)

dx = δnm . (13)

The sum over j selects mode m = n, and (12) becomes

φtr (x, y, t) ≈
∑
m

um (x)um (xs)
ρ (xs) km

√
yL

exp [ikm (y − L) − ωt] . (14)

In the plane of the source at y = L, the closure relations which define
the modes as a complete set

(∑
m

um(x)um(xs)
ρ(xs)

= δ (x− xs)
)

can be applied
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under the assumption that kn are nearly constant over the interval of the
contributing modes. This leads to φtr (x, L, t) ≈ δ (x− xs) exp(−iωt), which
proves that the phase-conjugated field focuses back at the source.

Kuperman et al. have experimentally demonstrated in the ocean the ro-
bustness of time-reversal focusing, provided the array adequately samples
the field in the water column. They have shown that temporal changes in the
ocean due to surface waves and internal waves degrade the focus but that this
degradation is tolerable if the average Green’s function is not severely per-
turbed by these time variations [17]. Moreover they experimentally achieved
a shift of the focal range on the order of 10% by shifting the central frequency
of the TRM prior to retransmission [18].

3.3 Time Reversal in Chaotic Cavities

In this section, we are interested in another aspect of multiply reflected waves:
waves confined in closed reflecting cavities such as elastic waves propagating
in a silicon wafer. With such boundary conditions, no information can escape
from the system and a reverberant acoustic field is created. If, moreover, the
cavity shows ergodic properties and negligible absorption, one may hope to
collect all information at only one point. Draeger and Fink [19,20,21] have
shown experimentally and theoretically that in this particular case a time
reversal can be obtained using only one time-reversal channel operating in
a closed cavity. The field is measured at one point over a long period of time
and the time-reversed signal is re-emitted at the same position.

The experiment is 2-dimensional and is carried out by using elastic sur-
face waves propagating along a monocrystalline silicon wafer whose shape
is a chaotic stadium. The shape of the cavity is of crucial importance. The
chaotic stadium geometry insures that each acoustic ray radiated by the
source will pass, after several reflections, sufficiently close to any point of the
cavity. This ergodic property may be obtained for different geometries, and
the geometry called the “D-shape stadium” was chosen for its simplicity.

Silicon was selected for its weak absorption. The elastic waves which prop-
agate in such a plate are Lamb waves. An aluminum cone coupled to a longi-
tudinal transducer generates these waves at one point in the cavity. A second
transducer is used as a receiver. The central frequency of the transducers is
1 MHz, and its bandwidth is 100%. At this frequency, only three Lamb modes
are possible (one flexural, two extensional). The source is isotropic and con-
sidered point-like because the cone tip is much smaller than the central wave-
length. A heterodyne laser interferometer measures the displacement field as
a function of time at different points on the cavity. Assuming that there is
nearly no mode conversion between the flexural mode and other modes at
the boundaries, we have only to deal with one field, the flexural-scalar field.

The experiment is a two-step process as described above: In the first step,
one of the transducers, located at point A, transmits a short omnidirectional
signal of duration 0.5µs into the wafer. Another transducer, located at B,
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observes a very long chaotic signal, which results from multiple reflections
of the incident pulse along the edges of the cavity and which continues for
more than 50 ms, corresponding to some one hundred reflections along the
boundaries. Then, a portion of 2 ms of the signal is selected, time-reversed
and re-emitted by point B. As the time-reversed wave is a flexural wave that
induces vertical displacement of the silicon surface, it can be observed using
the optical interferometer that scans the surface around point A (Fig. 9).

One observes both an impressive time recompression at point A and a re-
focusing of the time-reversed wave around the origin (Fig. 10), with a focal
spot whose radial dimension is equal to half the wavelength of the flexural
wave. Using reflections at the boundaries, the time-reversed wave field con-
verges towards the origin from all directions and gives a circular spot, like the
one that could be obtained with a closed time-reversal cavity covered with
transducers. The 2-ms time-reversed waveform is the time sequence needed
to focus exactly on point A.

The success of this time-reversal experiment is particularly interesting
with respect to two aspects. Firstly, it proves again the feasibility of time

Fig. 9. In the first step, the transducer located at point A transmits a short omnidi-
rectional signal (0, 5�s) into the wafer. The transducer located at point B observes
a very long chaotic signal which lasts more than 50ms. In the second step, a portion
of 2ms of the signal is selected, time-reversed and re-emitted by point B
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Fig. 10. (a) Time-reversed signal observed at point A. The observed signal is 210�s
long. (b) Time-reversed wave field observed at different times around point A on
a 15mm× 15mm square

reversal in wave systems with chaotic ray dynamics. Paradoxically, in the
case of one-channel time reversal, chaotic dynamics is not only harmless but
also even useful, as it guarantees ergodicity. Secondly, using a source of van-
ishing aperture, we obtain an almost perfect focusing quality. The procedure
approaches the performance of a closed TRC, which has an aperture of 360◦.
Hence, a one-point time reversal in a chaotic cavity produces better results
than a TRM in an open system. Using reflections at the edge, focusing quality
is not aperture limited, and in addition, the time-reversed collapsing wave-
front approaches the focal spot from all directions.
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As for the multiple-scattering medium, focusing properties of the time-
reversed wave can be calculated using the spatial correlator approach. Taking
into account the modal decomposition of the impulse response hAB(t) on the
eigenmodes ψn(x) of the cavity with eigenfrequency ωn, we obtain

hAB(t) =
∑

n

ψn(A)ψn(B)
sin(ωnt)
ωn

, (t > 0) . (15)

If hA′B(t) is the propagation impulse response from point B to an ob-
servation point A

′
(with coordinates r1), which is different from the source

location A, the time-reversed signal recreated at A
′

at time t1 = 0 can be
written as follows:

φtr(r1, 0) =
∫
hAB (t)hA′B (t) dt . (16)

Thus the directivity pattern of the time-reversed wave field is given by the
cross correlation of the Green’s functions that can be developed on the eigen-
modes of the cavity:

φtr(r1, 0) =
∑

n

1
ω2

n

ψn(A)ψn(r1)ψ2
n(B) . (17)

Note that in a real experiment one has to take into account the limited
bandwidth of the transducers, so a spectral function F (ω) centered on fre-
quency ωc, with bandwidth ∆ω, must be introduced and we can write (17)
in the form

φtr(r1, 0) =
∑

n

1
ω2

n

ψn(A)ψn(r1)ψ2
n(B)F (ωn) . (18)

Thus the summation is limited to a finite number of modes, which is typi-
cally in our experiment of the order of a few hundred. As we do not know
the exact eigenmode distribution for each chaotic cavity, we cannot evaluate
this expression directly. However, one may use a statistical approach and con-
sider the average over different realizations, which consists of summing over
different cavity realizations. So we replace in (18) the eigenmodes’ product
by their expectation values 〈. . .〉. We also use the qualitative argument pro-
posed by Berry [22,23,24] to characterize irregular modes in a chaotic system.
If chaotic rays support an irregular mode, it can be considered as a superposi-
tion of a large number of plane waves with random direction and phase. This
implies that the amplitude of an eigenmode has a Gaussian distribution with〈
ψ2

n

〉
= σ2 and a short-range isotropic correlation function given by a Bessel

function that can be written as follows:

〈ψn(A)ψn(r1)〉 = J0(2π |r1 − r0| /λn) , (19)

where λn is the wavelength corresponding to ωn. If A and A
′

are sufficiently
far apart from B not to be correlated, then〈

ψn(A)ψn(r1)ψ2
n(B)

〉
= 〈ψn(A)ψn(r1)〉 〈

ψ2
n(B)

〉
. (20)
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One obtains finally

〈
φtr(r1, 0)

〉
=

∑
n

1
ω2

n

J0(2π |r1 − r0| /λn)σ2F (ωn) . (21)

The experimental results obtained in Fig. 10 agree with this prediction
and show that in a chaotic cavity the spatial resolution is independent of the
TRM aperture. Indeed, with a one-channel TRM, the directivity patterns at
t = 0 are closed to the Bessel function J0(2π |r1 − r0| /λc) corresponding to
the central frequency of the transducers.

One can also observe that a very good estimate of the eigenmode corre-
lation function is experimentally obtained with only one realization. A one-
channel omnidirectional transducer is able to refocus a wave in a chaotic
cavity, and we have not averaged the data on different cavities or on different
positions of the transducer B.

3.3.1 Phase Conjugation Versus Time Reversal

This interesting result emphasizes how interesting time-reversal experiments
are compared to phase-conjugated experiments. In phase conjugation, one
only works with monochromatic waves and not with broadband pulses. For
example, if one works only at frequency ωn, so that there is only one term
in (18), one cannot refocus a wave on point A. An omnidirectional trans-
ducer, located at any position B, working in monochromatic mode, sends
a diverging wave in the cavity that has no reason to refocus on point A. The
refocusing process works only with broadband pulses, with a large number
of eigenmodes in the transducer bandwidth. Here, the averaging process that
gives a good estimate of the spatial correlation function is not obtained by
summing over different realizations of the cavity, as in (18), but by a sum
over “pseudo-realizations” which correspond to the different modes in the
same cavity. This come from the fact that in a chaotic cavity we may as-
sume a statistical decorrelation of the different eigenmodes. As the number
of eigenmodes available in the transducer bandwidth increases, the refocus-
ing quality becomes better and the focal spot pattern becomes closed to the
ideal Bessel function. Hence, the signal-to-noise level should increase as the
square-root of the number of modes in the transducer bandwidth.

A similar result has also been observed in the time-reversal experiment
conducted in a multiple-scattering medium. A clear refocusing has been ob-
tained with only a single array element (Fig. 4). The focusing process works
with broadband pulses (the transducer center frequency is 3.5 MHz with
a 50% bandwidth at −6 dB). For each individual frequency there is no fo-
cusing, and the estimate of the spatial correlation is very noisy. However, for
a large bandwidth, if we have statistical decorrelation of the wave fields for
different frequencies, the time-reversed field is self-averaging.
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4 Applications of Time-Reversal Mirrors

The most promising area for the application of TRMs is pulse–echo detec-
tion. In this domain, one is interested in the detection, imaging and some-
times destruction of passive reflecting targets. The low velocities of ultrasonic
waves allows separation of reflecting targets at different depths. A piezoelec-
tric transducer first sends a short impulse and then detects the various echoes
from the targets. In nondestructive evaluation (NDE), cracks and defects can
be found within materials of various shapes. In medical imaging, one looks
for organ walls, calcification, tumors, kidney or gallbladder stones. In un-
derwater acoustics, one looks for mines, submarines, or objects buried under
sediments. In all of these cases, the acoustic detection quality depends on
the availability of the sharpest possible ultrasonic beams to scan the medium
of interest. The presence of an aberrating medium between the targets and
the transducers can drastically change the beam profiles. In medical imaging,
a fat layer of varying thickness, bone tissues, or some muscular tissues may
greatly degrade focusing. In the human body, ultrasonic velocity variations
from 1440 m/s in fat to 1675 m/s in collagen defocus and deflect acoustic
beams. In NDE, the samples to be evaluated are usually immersed in a pool;
the interface shape between the samples and the coupling liquid currently
limits the detectability of small defects. In underwater acoustics, refraction
due to oceanic structure ranging in scale from centimeters to tens of kilome-
ters are important sources of distortions. For all these applications, a TRM
array can be controlled according to a three-step sequence [25,26]. One part
of the array generates a brief pulse to illuminate the region of interest through
an aberrating medium. If the region contains a point reflector, the reflected
wavefront is selected using a temporal window and the information acquired
is time reversed and reemitted. The re-emitted wavefront refocuses on the
target and through the aberrating medium. It compensates also for unknown
array deformation. In terms of signal theory, time-reversal processing makes
the spatio-temporally matched filter [27] to the propagation transfer func-
tion between the array and the target. Although this self-focusing technique
is highly effective, it requires the presence of a reflecting target in the medium.
When this medium contains several targets, the problem is more complicated
and iteration of the time-reversal operation may be used to select one target.
Indeed, if the medium contains two targets of different reflectivity, the time
reversal of the echoes reflected from these targets generates two wavefronts
focused on each target. The mirror produces the real acoustic images of the
two reflectors on themselves. The highest amplitude wavefront illuminates
the most reflective target, while the weakest wavefront illuminates the sec-
ond target. In this case, the time reversal process can be iterated. After the
first time-reversed illumination, the weakest target is illuminated more weakly
and reflects a fainter wavefront than the one coming from the strongest tar-
get. After some iterations, the process converges and produces a wavefront
focused on the most reflective target. It converges if the target separation is
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sufficient to avoid the illumination of one target by the real acoustic image of
the other one. Prada and Fink and Prada et al. [28,29] studied theoretically
the convergence of time-reversal iterations in a multitarget medium and have
determined the cases in which the target which reflects the most is selected
among several targets. In some cases it is also interesting to learn how to
focus on the other reflectors. The theoretical analysis of the iterative time-
reversal process led to a very elegant solution to this problem (the DORT
method), which is presented in Chap. 5. This analysis consists of determining
the possible transmitted waveforms that are invariant under the time-reversal
process. For these waveforms an iteration of the time-reversal operation gives
stationary results. Such waveforms can be determined through the calculation
of the eigenvectors of the so-called time-reversal operator.

Another interesting application of pulse–echo-mode TRMs is to put an
elastic target in resonance. For example, if you illuminate an extended solid
target with a short pulse, the backscattered field results in several contribu-
tions. A first reflected wave, “the specular echo,” is determined by the target
geometry. It is followed by a series of waves, “the resonant echo,” which corre-
spond to the propagation of surface and volume waves around and inside the
scatterer. These waves are generated at particular points on the target. They
propagate at the surface or in the solid, and they radiate into the fluid from
different mode-conversion points on the scatterer, which behave as secondary
sources. Thomas et al. [30] studied the case of a hollow target where the elas-
tic part is mainly due to circumferential waves (dispersive Lamb waves): the
first symmetrical and antisymmetrical Lamb waves, S0 and A0. As these two
waves have different velocities, they can be separated experimentally by time
windowing, and their generation points on the target are located at different
positions in accordance with Snell’s laws. Selecting and time reversing each
wavefront separately, the time-reversed wave energy only concentrates at the
generation points of the selected wave. This process enhances the generation
of each specific Lamb wave compared to the other reflected waves. Iterat-
ing this process, we can build a waveform that is spatio-temporally matched
to the vibration mode of the target. Prada et al. have extended the DORT
technique [31] to this type of target, and they have demonstrated that each
Lamb wave give rises to a set of eigenvectors of the time-reversal operator.
These vectors can be calculated for a specific target and can be used to build
optimal excitations of the array to put the target in resonance.

A first medical application of pulse–echo-mode TRMs is the destruction
of kidney and gallbladder stones in the human body. Although the stones
may be accurately located using X-ray imaging or ultrasonic scanners, it is
difficult to focus precisely the ultrasonic waves in order to destroy the stones
through inhomogeneous tissues. Furthermore, the stones move as much as
several centimeters during breathing. Several thousand shots are required to
destroy a stone and it is not currently possible to track the stone movements
with a mechanical system. Consequently, it is estimated that, with current
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piezoelectric devices, only 30% of the ultrasonic shots reach the stone. Ultra-
sonic time-reversal techniques can solve these problems. To locate a reflecting
target, such as a kidney stone in its environment of other stones and organ
walls, the zone of interest is illuminated using a few elements of the transducer
matrix. The reflected signals are recorded with the whole matrix and time-
reversed. When the process is iterated several times, the ultrasonic beam
converges towards the area of the stone that reflects the most. The time-
reversal iteration selects one of the spots. Once the spot has been reliably
located, intermittent amplified pulses can be applied to shatter the stone. As
the stone moves, the process is repeated in order to locate it in real time.
With Thomas and Wu [32], we have developed a 64-channel TRM 20 cm in
diameter.

Another major promise of self-focusing TRM arrays that has not yet
been fulfilled is ultrasonic medical hyperthermia. In this technique, high-
intensity ultrasound produces thermal effects. A part of the ultrasound energy
is absorbed by the tissue and converted to heat, resulting in an increase
in local temperature. If a temperature of 60–70 ◦C is reached, irreversible
and deleterious effects will occur within several seconds. Focused ultrasound
surgery pioneered in the 1950s by Fry at the University of Illinois did not gain
general acceptance until recently [33,34]. Focal probes consisting of annular
phased arrays are now marketed for the treatment of prostate cancer. These
techniques are limited to the production of necrosis in tissues that are not
moving; however, applications to abdominal and cardiac surgery are limited
by the tissue motion induced both by the cardiac cycle and by breathing.
At the University of Michigan, Ebbini and his group are developing self-
focusing arrays to solve this problem. In our group, we are working on a TRM
application for brain hyperthermia. The challenge of this application is to
focus through the skull bone, which induces severe refractions and scattering
of the ultrasonic beam. With Thomas and Tanter, we have shown that the
porosity of the skull bone produces a strong dissipation, which breaks the
time-reversal symmetry of the wave equation. We have shown [35,36] that
time-reversal focusing is no longer appropriate to compensate for the skull
properties, and we have developed a new focusing technique which combines
a correction for the dissipative effects with classical time-reversal focusing.
This technique allows us to focus and steer, through the skull, an ultrasonic
beam which converges on a 1.5 mm diameter spot with very low side lobes.

Another important application of TRMs is flaw detection in solids. The
detection of small defects is difficult when the inspected object consists of
heterogeneous or anisotropic material and when the sample has a complex
geometry. Usually, the solid and the ultrasonic transducers are immersed in
water, and the transducers are moved to scan the zone of interest. Due to re-
fraction, the ultrasonic beams can be altered by the water–solid interface. In
addition, the longitudinally polarized ultrasound traveling in water may pro-
duce waves of different polarizations and velocities in the solid (longitudinal,
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transverse and surface waves). Beam focusing and steering of the ultrasonic
array in the solid is a difficult task for which self-focusing techniques have
been proposed to enhance the flexibility of the process [37]. We have shown
that using TRMs is a very effective technique to solve these problems. TRMs
automatically compensate for refraction, mode conversion and anisotropy. In
a joint program with SNECMA (Société Nationale d’Etudes et de Construc-
tion de Moteurs d’Avion), we have developed a 128-element TRM to detect
the presence of low-contrast defects within titanium alloys used in jet en-
gines. It is a difficult problem because titanium has a highly heterogeneous
microstructure which produces large amounts of scattering noise that can
hide the echo from a defect. With Chakroun et al. [38], we have shown that
the iterative pulse–echo mode allows us to autofocus and to detect defects
as small as 0.4 mm in 250-mm-diameter titanium billets. Compared to other
techniques, the signal-to-noise ratio is enhanced in all situations, and smaller
defects can be detected in the billet core, where ultrasonic beams are strongly
distorted.

5 Conclusion

Time reversal has exciting applications in the field of acoustics. Because
acoustic time-reversal technology is now easily accessible to modern elec-
tronic technology, it is expected that applications in various areas will ex-
pand rapidly. Initial applications show promise in medical therapy as well
as in nondestructive testing. In addition to solving practical problems, time-
reversal mirrors are also unique research tools that may allow us to better
understand problems related to wave propagation in disordered media and
reverberant cavities.
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